Tag Archives: renewable energy

Want energy storage? Here are 22,000 sites for pumped hydro across Australia

The Conversation

Andrew Blakers, Australian National University; Bin Lu, Australian National University, and Matthew Stocks, Australian National University

The race is on for storage solutions that can help provide secure, reliable electricity supply as more renewables enter Australia’s electricity grid.

With the support of the Australian Renewable Energy Agency (ARENA), we have identified 22,000 potential pumped hydro energy storage (PHES) sites across all states and territories of Australia. PHES can readily be developed to balance the grid with any amount of solar and wind power, all the way up to 100%, as ageing coal-fired power stations close.

Solar photovoltaics (PV) and wind are now the leading two generation technologies in terms of new capacity installed worldwide each year, with coal in third spot (see below). PV and wind are likely to accelerate away from other generation technologies because of their lower cost, large economies of scale, low greenhouse emissions, and the vast availability of sunshine and wind.

New generation capacity installed worldwide in 2016. ANU/ARENA, Author provided

Although PV and wind are variable energy resources, the approaches to support them to achieve a reliable 100% renewable electricity grid are straightforward:

  • Energy storage in the form of pumped hydro energy storage (PHES) and batteries, coupled with demand management; and
  • Strong interconnection of the electricity grid between states using high-voltage power lines spanning long distances (in the case of the National Electricity Market, from North Queensland to South Australia). This allows wind and PV generation to access a wide range of weather, climate and demand patterns, greatly reducing the amount of storage needed.

PHES accounts for 97% of energy storage worldwide because it is the cheapest form of large-scale energy storage, with an operational lifetime of 50 years or more. Most existing PHES systems require dams located in river valleys. However, off-river PHES has vast potential.


Read more: How pushing water uphill can solve our renewable energy issues.


Off-river PHES requires pairs of modestly sized reservoirs at different altitudes, typically with an area of 10 to 100 hectares. The reservoirs are joined by a pipe with a pump and turbine. Water is pumped uphill when electricity generation is plentiful; then, when generation tails off, electricity can be dispatched on demand by releasing the stored water downhill through the turbine. Off-river PHES typically delivers maximum power for between five and 25 hours, depending on the size of the reservoirs.

Most of the potential PHES sites we have identified in Australia are off-river. All 22,000 of them are outside national parks and urban areas.

https://datawrapper.dwcdn.net/fXKQ3/1/

The locations of these sites are shown below. Each site has between 1 gigawatt-hour (GWh) and 300GWh of storage potential. To put this in perspective, our earlier research showed that Australia needs just 450GWh of storage capacity (and 20GW of generation power) spread across a few dozen sites to support a 100% renewable electricity system.

In other words, Australia has so many good sites for PHES that only the best 0.1% of them will be needed. Developers can afford to be choosy with this significant oversupply of sites.

Pumped hydro sites in Australia. ANU/ARENA, Author provided

Here is a state-by-state breakdown of sites (detailed maps of sites, images and information can be found here):

NSW/ACT: Thousands of sites scattered over the eastern third of the state

Victoria: Thousands of sites scattered over the eastern half of the state

Tasmania: Thousands of sites scattered throughout the state outside national parks

Queensland: Thousands of sites along the Great Dividing Range within 200km of the coast, including hundreds in the vicinity of the many wind and PV farms currently being constructed in the state

South Australia: Moderate number of sites, mostly in the hills east of Port Pirie and Port Augusta

Western Australia: Concentrations of sites in the east Kimberley (around Lake Argyle), the Pilbara and the Southwest; some are near mining sites including Kalgoorlie. Fewer large hills than other states, and so the minimum height difference has been set at 200m rather than 300m.

Northern Territory: Many sites about 300km south-southwest of Darwin; a few sites within 200km of Darwin; many good sites in the vicinity of Alice Springs. Minimum height difference also set at 200m.

The maps below show synthetic Google Earth images for potential upper reservoirs in two site-rich regions (more details on the site search are available here). There are many similarly site-rich regions across Australia. The larger reservoirs shown in each image are of such a scale that only about a dozen of similar size distributed across the populated regions of Australia would be required to stabilise a 100% renewable electricity system.

Araluen Valley near Canberra. At most, one of the sites shown would be developed. ANU/ARENA, Author provided
Townsville, Queensland. At most, one of the sites shown would be developed. ANU/ARENA, Author provided

The chart below shows the largest identified off-river PHES site in each state in terms of energy storage potential. Also shown for comparison are the Tesla battery and the solar thermal systems to be installed in South Australia, and the proposed Snowy 2.0 system.

Largest identified off-river PHES sites in each state, together with other storage systems for comparison.
ANU/ARENA, Author provided

The map below shows the location of PHES sites in Queensland together with PV and wind farms currently in an advanced stage of development, as well as the location of the Galilee coal prospect. It is clear that developers of PV and wind farms will be able to find a PHES site close by if needed for grid balancing.

Solar PV (yellow) and wind (green) farms currently in an advanced stage of development in Queensland, together with the Galilee coal prospect (black) and potential PHES sites (blue).
ANU/ARENA, Author provided

Annual water requirements of a PHES-supported 100% renewable electricity grid would be less than one third that of the current fossil fuel system, because wind and PV do not require cooling water. About 3,600ha of PHES reservoir is required to support a 100% renewable electricity grid for Australia, which is 0.0005% of Australia’s land area, and far smaller than the area of existing water storages.

PHES, batteries and demand management are all likely to have prominent roles as the grid transitions to 50-100% renewable energy. Currently, about 3GW per year of wind and PV are being installed. If this continued until 2030 it would be enough to supply half of Australia’s electricity consumption. If this rate is doubled then Australia will reach 100% renewable electricity in about 2033.

The ConversationFast-track development of a few excellent PHES sites can be completed in 2022 to balance the grid when Liddell and other coal-fired power stations close.

Andrew Blakers, Professor of Engineering, Australian National University; Bin Lu, PhD Candidate, Australian National University, and Matthew Stocks, Research Fellow, ANU College of Engineering and Computer Science, Australian National University

This article was originally published on The Conversation. (Reblogged by permission). Read the original article.

Leave a comment

Filed under Reblogs

Australia’s electricity market is not agile and innovative enough to keep up

The Conversation

Hugh Saddler, Australian National University

On the early evening of Wednesday, February 8, electricity supply to some 90,000 households and businesses in South Australia was cut off for up to an hour. Two days later, all electricity consumers in New South Wales were warned the same could happen to them. It didn’t, but apparently only because supply was cut to the Tomago aluminium smelter instead. In Queensland, it was suggested consumers might also be at risk over the two following days, even though it was a weekend, and again on Monday, February 13. What is going on?

The first point to note is that these were all very hot days. This meant that electricity demand for air conditioning and refrigeration was very high. On February 8, Adelaide recorded its highest February maximum temperature since 2014. On February 10, western Sydney recorded its highest ever February maximum, and then broke this record the very next day. Brisbane posted its highest ever February maximum on February 13.

That said, the peak electricity demand in both SA and NSW was some way below the historical maximum, which in both states occurred during a heatwave on January 31 and February 1, 2011. In Queensland it was below the record reached last month, on January 18.

Regardless of all this, shouldn’t the electricity industry be able to anticipate such extreme days, and have a plan to ensure that consumers’ needs are met at all times?

Much has already been said and written about the reasons for the industry’s failure, or near failure, to do so on these days. But almost all of this has focused on minute-by-minute details of the events themselves, without considering the bigger picture.

The wider issue is that the electricity market’s rules, written two decades ago, are not flexible enough to build a reliable grid for the 21st century.

Vast machine

In an electricity supply system, such as Australia’s National Electricity Market (NEM), the amount of electricity supplied must precisely match the amount being consumed in every second of every year, and always at the right voltage and frequency. This is a big challenge – literally, considering that the NEM covers an area stretching from Cairns in the north, to Port Lincoln in the west and beyond Hobart in the south.

Continent-sized electricity grids like this are sometimes described as the world’s largest and most complex machines. They require not only constant maintenance but also regular and careful planning to ensure they can meet new demands and incorporate new technologies, while keeping overall costs as low as possible. All of this has to happen without ever interrupting the secure and reliable supply of electricity throughout the grid.

Until the 1990s, this was the responsibility of publicly owned state electricity commissions, answerable to their state governments. But since the industry was comprehensively restructured from the mid-1990s onwards, individual states now have almost no direct responsibility for any aspect of electricity supply.

Electricity is now generated mainly by private-sector companies, while the grid itself is managed by federally appointed regulators. State governments’ role is confined to one of shared oversight and high-level policy development, through the COAG Energy Council.

This market-driven, quasi-federal regime is underpinned by the National Electricity Rules, a highly detailed and prescriptive document that runs to well over 1,000 pages. This is necessary to ensure that the grid runs safely and reliably at all times, and to minimise opportunities for profiteering.

The downside is that these rules are inflexible, hard to amend, and unable to anticipate changes in technology or economic circumstances.

Besides governing the grid’s day-to-day operations, the rules specify processes aimed at ensuring that “the market” makes the most sensible investments in new generation and transmission capacity. These investments need to be optimal in terms of technical characteristics, timing and cost.

To borrow a phrase from the prime minister, the rules are not agile and innovative enough to keep up. When they were drawn up in the mid-1990s, electricity came almost exclusively from coal and gas. Today we have a changing mix of new supply technologies, and a much more uncertain investment environment.

Neither can the rules ensure that the closure of old, unreliable and increasingly expensive coal-fired power stations will occur in a way that is most efficient for the grid as a whole, rather than most expedient for individual owners. (About 3.6 gigawatts of capacity, spread across all four mainland NEM states and equalling more than 14% of current coal power capacity, has been closed since 2011; this will increase to 5.4GW and 22% when Hazelwood closes next month.)

Finally, one of the biggest drivers of change in the NEM over the past decade has been the construction of new wind and solar generation, driven by the Renewable Energy Target (RET) scheme. Yet this scheme stands completely outside the NEM rules.

The Australian Energy Markets Commission – effectively the custodian of the rules – has been adamant that climate policy, the reason for the RET, must be treated as an external perturbation, to which the NEM must adjust while making as few changes as possible to its basic architecture. On several occasions over recent years the commission has successfully blocked proposals to broaden the terms of the rules by amending the National Electricity Objective to include an environmental goal of boosting renewable energy and reducing greenhouse emissions.

Events in every state market over the past year have shown that the electricity market’s problems run much deeper than the environmental question. Indeed, they go right to the core of the NEM’s reason for existence, which is to keep the lights on. A fundamental review is surely long overdue.

The most urgent task will be identifying what needs to be done in the short term to ensure that next summer, with Hazelwood closed, peak demands can be met without more load shedding. Possible actions may include establishing firm contracts with major users, such as aluminium smelters, to make large but brief reductions in consumption, in exchange for appropriate compensation. Another option may be paying some gas generators to be available at short notice, if required; this would not be cheap, as it would presumably require contingency gas supply contracts to be in place.

The most important tasks will address the longer term. Ultimately we need a grid that can supply enough electricity throughout the year, including the highest peaks, while ensuring security and stability at all times, and that emissions fall fast enough to help meet Australia’s climate targets.

The ConversationHugh Saddler, Honorary Associate Professor, Centre for Climate Economics and Policy, Australian National University

This article was originally published on The Conversation. (Reblogged by permission). Read the original article.

Leave a comment

Filed under Reblogs

The Tesla battery heralds the beginning of the end for fossil fuels

The Conversation

John Mathews

Wind and solar power have made great strides in recent years, accounting for 56% of net additions to global power capacity in 2013.* What holds them back is their transience and intermittent character. The sun doesn’t shine at night and the wind doesn’t blow year-round – these are the mantras of all those opposed to the progress of renewables.

Now the renewable power billionaire Elon Musk has just blown away that final defence. Last Thursday in California he introduced to the world his sleek new Powerwall – a wall-mounted energy storage unit that can hold 10 kilowatt hours of electric energy, and deliver it at an average of 2 kilowatts, all for US$3,500.

That translates into an electricity price (taking into account installation costs and inverters) of around US$500 per kWh – less than half current costs, as estimated by Deutsche Bank.

That translates into delivered energy at around 6 cents per kWh for the householder, meaning that a domestic system plus storage would still come out ahead of coal-fired power delivered through the conventional grid.

What’s more, Musk is going to manufacture the batteries in the United States, at the “gigafactory” he is building just over the border from California in Nevada. He is not waiting for some totally new technology, but is scaling up the tried and tested lithium-ion battery that he is already using for his electric vehicles.

Not just for homes

Now the fossil fuel companies – from fuel suppliers such as coal miners to coal-burning electric power utilities – will be on the defensive, fighting the new normal of cheaper renewable supplies and storage. Instead of asking “can we have our own energy system?” communities will be asking “why can’t we have it?”

The Tesla Energy system launched last week is comprehensive, with global ramifications. The Powerwall system offering 10 kWh is targeted at domestic users. It is complemented by a commercial system termed the Powerpack offering 100 kWh storage, and a stack of 100 such units to form a 10 megawatt hour storage unit that can be used at the scale of small electricity grids.

Whole communities could build micro-grid power supply systems around such a 10 MWh energy storage system, fed by renewable energy generation (wind power or rooftop solar power), at costs that just became super-competitive.

At his launch last week, Musk maintained that the entire electric power grid of the US could be replicated with just 160 million of these utility-scale energy storage units. And two billion of the utility-scale units could provide storage of 20 trillion kWh – electric power for the world.

The revolution begins

It is instructive to put these numbers in context. There are already around 2 billion cars and commercial vehicles on the world’s roads, and nearly 100 million new vehicles are being added every year.

If it’s feasible to build these exhaust-pumping complex machines, it’s certainly feasible to build the storage units that will help to make them unnecessary. What’s more, Elon Musk has just announced that he intends to do so.

Musk is a Henry Ford-style figure who takes others’ innovations and scales them up, taking the breathtaking entrepreneurial leaps that others can only dream about. Suddenly the world of renewable energy just moved to become the new normal – because when combined with cost-effective storage it becomes unbeatable.

Musk will not be alone. Already China is gearing up to be the world’s renewable energy superpower, with the largest installed base of wind power and probably by this year the world’s largest installed base of solar photovoltaic (PV) power, as well as by far the world’s largest manufacturing system for wind turbines and solar photovoltaic cells.

There are already Chinese companies such as BYD producing their own energy storage units based on lithium ion technology for both domestic and commercial usage – although not as sleek nor as cheap as the new Tesla offering.

But give them time and they will be producing at comparable scale and cost, or bettering it. This is capitalist competition – and its propagation is what makes Tesla’s announcement the start of the real renewables revolution.

No going back

What about Australia and the sorry state of affairs in which the Abbott government can see nothing beyond coal exports and does everything it can to halt the transition to renewables? Tesla’s announcement has just shifted the ground beneath their feet.

No longer can anyone in Australia claim that renewables would be “nice” if only they came with storage. Now they do.

A smart government in Australia would be looking to ride this wave and promote Australian renewable technology as a source of wealth for the country in a post-fossil fuel era.

Finally we would be able to move beyond the fruitless debates in Australia over whether to have a carbon tax or not, and move to the more immediate and practical issue of promoting renewable industry and technology.

China has given the world a huge lesson in the business-like way it has gone about building and promoting its renewable energy industries, importing technology from around the world and now improving on it as well, and scaling up production so as to drive down costs.

Now Musk and his Tesla Energy have just taken that process one decisive further step, to encompass storage as well as renewable power generation. From here there is no going back.

*This article was updated on May 19 to more accurately reflect the uptake of renewable energy.

The ConversationJohn Mathews is Professor of Strategic Management, Macquarie Graduate School of Management at Macquarie University.

This article was originally published on The Conversation. (Reblogged by permission). Read the original article.


1 Comment

Filed under Reblogs